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Solutions of systems of partial differential equations (PDE) describing photochemical ki-
netics for such processes as (1)A+hν → B; (2) A+hν → B andB → A; (3) A+hν → B

andB → C; (4) A + hν → B andB + hν → C were found. It was established that
when the intensity of UV light and the current time are used as independent derivatives, the
initial PDE system will split into the set of ordinary differential equations (ODE) in combi-
nation with the boundary and initial conditions imposed. These ODE may be solved exactly.
A procedure to obtain approximate solutions which are convenient to use was also proposed.
Errors of the approximate solutions were estimated. An alternative method to obtain approx-
imate solutions of the initial PDE consisting of transforming it to a system of the equations
that can be easily solved using the successive iterations has been proposed. The results ob-
tained may be useful for description photochemical kinetics in the media of low mobilities of
reagents.
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0. Introduction

Modern photochemistry has come across the problem of studying of photochem-
ical kinetics in the systems with low reagent mobilities. The main feature of the sys-
tems is the existence of a substantial inequality of molecules with respect to the in-
tensity of UV light initiating a photochemical reaction. Some approaches to describe
the kinetics of reactions in the said systems [1–7] have been proposed. However, a
great majority of the works deals with very simplified cases or uses some approxima-
tions restricting fields of their applicability tremendously. Developing general meth-
ods of constructing of the mathematical models of photochemical kinetics and of a
subsequent solution of the involved equations is an intriguing and important prob-
lem.

To take into account an inequality of molecules with respect to the UV light inten-
sity one can replace the integral form of the Lambert–Berr law with of the differential
one. Let us consider a sample irradiated by UV light as a system consisting of a large
number of the “elementary photochemical reactors”. The rate of a chemical reaction
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in each reactor is proportional to the photosensitive compound concentration and to the
intensity of the UV light absorbed by the reactor. When there is no transfer of a pho-
tosensitive compound,i, between the “elementary reactors” one will be able to write
down

∂Ai

∂t
= −ϕiEAi, (1)

whereAi ≡ Ai(x, t) is the concentration of theith substance,E ≡ E(x, t) is the
intensity of the absorbed UV light,ϕi is a proportionality constant.

E can be determined using the integral form of the Lambert–Berr equation

E = E0

[
1− exp

(
−l

n∑
i=1

aiAi

)]
,

whereai is the absorbance of theith substance,E0 is the intensity of the UV light
irradiating an elementary reactor,l is thickness of the reactor.

Whenl is small, one can write

∂E

∂x
= −E

n∑
i=1

aiAi. (2)

Equations (1) and (2) together with differential equations of an ordinary chem-
ical kinetics for non-photochemical steps, proper boundary and initial conditions im-
posed and the reagents mass conservation relationships can be used to construct math-
ematical models describing the variation of a reactant concentration in space and
time in the course of a photochemical reaction. The similar models were used ear-
lier [2,6,7]. But in these works the exact solutions were not obtained even for simple
cases.

The need of such solutions is caused by difficulties associated with the correct
processing of the photochemical kinetics results obtained in experiments. We should
note that numerical procedures [8–10] are not appropriate being very time-consuming
and producing output which is hard to apply and interpret.

The aim of our paper is to obtain exact and/or approximate expressions describing
photochemical reaction kinetics when the UV intensity and the reagent concentrations
are not constant in space along an irradiated sample.

1. Mathematical models of simple photochemical reactions

Using the differential form of the Beer–Lambert equation one can obtain the fol-
lowing PDE systems describing the kinetics of simple photochemical reactions.
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Reaction 1 (A + hν → B). The process consists of the only photochemical step,
A→ B: 

∂A

∂t
+ ϕEA = 0,

B = A0+ B0− A,

∂E

∂x
= −E[aB(A0+ B0)+ (aA − aB)A

]
.

The boundary and initial conditions areA(x,0) = A0, B(x,0) = B0, E(0, t) = E0.

Reaction 2 (A + hν → B and B → A). The process consists of two steps, photo-
chemical,A→ B, and thermal,B → A:

∂A

∂t
+ (k + ϕE)A = k(A0+ B0),

B = A0+ B0− A,

∂E

∂x
= −E[aB(A0+ B0)+ (aA − aB)A

]
.

The boundary and initial conditions to be imposed areA(x,0) = A0, B(x,0) = B0,
E(0, t) = E0.

Reaction 3 (A+ hν → B and B → C). Herein, the first step,A→ B, is photochem-
ical and the second one,B → C, is thermal:

∂A

∂t
+ ϕAE = 0,

∂B

∂t
+ kB = ϕEA,

C = A0− A− B,

∂E

∂x
= −E[(aA − aC)A+ (aB − aC)B + aCA0

]
.

The boundary and initial conditions areA(x,0) = A0, B(x,0) = 0, C(x,0) = 0,
E(0, t) = E0.

Reaction 4 (A+hν→ B and B+hν→ C). The process consists of two photochem-
ical steps,A→ B, and,B → C:

∂A

∂t
+ ϕ1EA = 0,

∂B

∂t
+ ϕ2EB = ϕ1EA,

C = A0− A− B,

∂E

∂x
= −E[(aA − aC)A+ (aB − aC)B + aCA0

]
.
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Table 1
Parameters for a system of the first type.

Reaction No. α1 α2 α3 ε1 ε2

1 0 0 ϕ aB(A0+ B0) aA − aB
2 k(A0+ B0) k ϕ aB(A0+ B0) aA − aB

Table 2
Parameters for a system of the second type.

Reaction No. α3 β1 β2 β3 ε1 ε2 ε3

3 ϕ ϕ k 0 aCA0 aA − aC aB − aC
4 ϕ1 ϕ1 0 ϕ2 aCA0 aA − aC aB − aC

The boundary and initial conditions to be imposed areA(x,0) = A0, B(x,0) = 0,
C(x,0) = 0,E(0, t) = E0.

The initial concentrations of reagentsA, B, C areA0, B0, C0 (in M·m−3) while
the concentrations at a distancex (in m) across the sample at a current timet are
A = A(x, t), B = B(x, t), C = C(x, t). Monochromatic UV radiation of intensity at
the surface of the sample isE0 (in W·m−2) and at a distancex across the sample at
the current timet is E = E(x, t). aA, aB, aC are absorption coefficients ofA, B, C

(in M−1·m2). k is the first-order rate constant (in s−1) andϕ, ϕ1, ϕ2 are “effective” rate
constants of the corresponding photochemical reactions (in W−1·m2·s−1).

To simplify the further considerations let us subdivide the PDE systems as being
of the first (reactions 1 and 2) and second type (reactions 3 and 4).

The first type system (definitions of the parameters are shown in table 1):
∂A

∂t
+ (α2+ α3E)A = α1,

B = A0+ B0− A,

∂E

∂x
= −E(ε1+ ε2A),

(3)

has the following boundary and initial conditions:A(x,0) = A0, B(x,0) = 0,
E(0, t) = E0.

The second type system (definitions of its parameters are shown in table 2):

∂A

∂t
+ α3EA = 0,

∂B

∂t
+ (β2+ β3E)B = β1EA,

C = A0 − A− B,

∂E

∂x
= −E(ε1+ ε2A+ ε3B)

(4)
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has the following boundary and initial conditions:A(x,0) = A0, B(x,0) = 0,
C(x,0) = 0,E(0, t) = E0.

2. Solving of the systems by the coordinate system changing

Having∂E/∂x �= 0 for all x � 0 andt � 0, one can transform the systems from
the independent variables,x andt , to the independent variables,E andt . Then the first
type PDE system splits into two ordinary differential equations (ODE) and one equality,
and the second type system splits into three ODEs and one equality.

Then the first type system takes form
dA

dt
+ p1(E)A = α1,

B = A0+ B0− A,

dx

dE
= − 1

Eq1(E, t)
,

(5)

where

A(E,0) = A0, B(E,0) = 0, x(E0, t) = 0,

and

p1(E) = α2+ α3E, q1(E, t) = ε1+ ε2A(E, t).

Being treated in the same way, the second system splits into

dA

dt
+ p2(E)A = 0,

dB

dt
+ p3(E)B = β1EA,

C = A0− B − A,

dx

dE
= − 1

Eq2(E, t)
,

(6)

where

A(E,0) = A0, B(E,0) = 0, C(E,0) = 0, x(E0, t) = 0,

and

p2(E) = α3E, p3(E) = β2 + β3E, q2(E, t) = ε1+ ε2A(E, t)+ ε3B(E, t).

The exact solution of equations (5) can be easily obtained:

A=A(E, t) = a1(E)+ b1(E)exp
[−p1(E)t

]
, (7.1)

B =B(E, t) = A0 + B0− A(E, t), (7.2)

x = x(E, t) =
∫ E0

E

du

uq1(u, t)
, (7.3)
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where

a1(E)= α1

p1(E)
,

b1(E)=A0− a1(E).

The exact solution of equations (6) can be written as

A=A(E, t) = A0 exp
(−p2(E)t

)
, (8.1)

B =B(E, t) = A0β1E

p3(E)− p2(E)

{
exp

[−p2(E)t
]− exp

[−p3(E)t
]}

, (8.2)

C =C(E, t) = A0− A(E, t)− B(E, t), (8.3)

x = x(E, t) =
∫ E0

E

du

uq2(u, t)
. (8.4)

In the general case integrals (7.3) and (8.4) are not easy to evaluate. However, they
can serve as the starting point to construct a family of approximations.

At the first step functionsq1(E, t) andq2(E, t) may be approximated by the first
term of the series expansions

q1(E, t)= q1(E0, t)+ ∂q1(E0, t)

∂E
(E − E0)+ · · · , (8.5)

q2(E, t)= q2(E0, t)+ ∂q2(E0, t)

∂E
(E − E0)+ · · · . (8.6)

Substitution ofq1(E, t) ≈ q1(E0, t) and q2(E, t) ≈ q2(E0, t) into equations (7.3)
and (8.4) gives the approximate solutions forx, x̃1 andx̃2,

x̃1= x̃1(E, t) =
∫ E0

E

du

uq1(E0, t)
= 1

q1(E0, t)
ln

E0

E
, (8.7)

x̃2= x̃2(E, t) =
∫ E0

E

du

uq2(E0, t)
= 1

q2(E0, t)
ln

E0

E
. (8.8)

Upper estimates of the relative errors appeared due to use of the approximations
given by equations (8.7) and (8.8) were obtained (see appendix):

δx1 �A0V1(ϕtE, ϕtE0)

∣∣∣∣ aA − aB

q1(E0, t)

∣∣∣∣, (8.9)

δx2 �
∣∣∣∣ aA − aB

q1(E0, t)

{
k(A0+ B0)ϕ(E0− E)

(k + ϕE0)(k + ϕE)
+ A0V1

(
t (k + ϕE), t (k + ϕE0)

)
+ k(A0+ B0)

{
exp[−t (k + ϕE0)]

k + ϕE0
+ et

}}∣∣∣∣. (8.10)
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Here, we have e= 2.718281828. . . .

δx3 �A0

∣∣∣∣ −ε2

q2(E0, t)
V (ϕtE0, ϕtE)

∣∣∣∣
+ ϕA0

∣∣∣∣ ε2

q2(E0, t)

{
E0

k − ϕE0
V1(ϕtE0, kt)− E

k − ϕE
V1(ϕEt, kt)

}∣∣∣∣, (8.11)

δx4 �A0

∣∣∣∣ ε2

q2(E0, t)
V1(ϕ1tE0, ϕ1tE)

∣∣∣∣
+ ϕ1A0

∣∣∣∣ ε3

(ϕ2− ϕ1)q2(E0, t)

[
V1(ϕ1E0t, ϕ2E0t)+

(
ϕ2

ϕ1

)ϕ1/(ϕ1−ϕ2)
(

1− ϕ1

ϕ2

)]∣∣∣∣,
(8.12)

where

V1(x, y) = exp(−x)− exp(−y).
(Here and below capped symbols such asx̃(E, t), Ẽ(x, t) etc. denote the approximate
solutions.)

To simplify the usage of the results obtained we have written them down for both
(E, t) and (x, t) sets of the independent variables.

In the case of reaction 1 one can write down for theE andt variables

A(E, t)=A0 exp(−ϕEt), (9.1)

B(E, t)=A0+ B0− A(E, t), (9.2)

x̃(E, t)= 1

q1(E0, t)
ln

E0

E
, (9.3)

where

q1(E0, t) = aB(A0+ B0)+ A0(aA − aB)exp(−ϕE0t); (9.4)

and for thex andt variables

Ẽ(x, t)=E0 exp
[−q1(E0, t)x

]
, (9.5)

Ã(x, t)=A0 exp
[−ϕẼ(x, t)t

]
, (9.6)

B̃(x, t)=B0+ A0− Ã(x, t). (9.7)

In the case of reaction 2 one can write down forE andt variables

A(E, t)= k(A0+ B0)

k + ϕE
+ ϕEA0− kB0

k + ϕE
exp

[−(k + ϕE)t
]
, (10.1)

B(E, t)=A0 + B0− A(E, t), (10.2)

x̃(E, t)= 1

q1(E0, t)
ln

E0

E
, (10.3)
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where

q1(E0, t)= aB(A0+ B0)

+ (aA − aB)

{
k(A0+ B0)

k + ϕE0
+ ϕE0A0− kB0

k + ϕE0
exp

[−(k + ϕE0)t
]}

, (10.4)

and for thex andt variables

Ẽ(x, t)=E0 exp
[−q1(E0, t)x

]
, (10.5)

Ã(x, t)= k(A0+ B0)

k + ϕẼ(x, t)
+ ϕA0Ẽ(x, t)− kB0

k + ϕẼ(x, t)
exp

[−(k + ϕẼ(x, t)
)
t
]
, (10.6)

B̃(x, t)=A0+ B0− Ã(x, t). (10.7)

In the case of reaction 3 one can write down for theE andt variables

A(E, t)=A0 exp(−ϕEt), (11.1)

B(E, t)= ϕEA0

k − ϕE
V1(ϕEt, kt), (11.2)

C(E, t)=A0 − A(E, t)− B(E, t), (11.3)

x̃(E, t)= 1

q1(E0, t)
ln

E0

E
, (11.4)

where

q1(E0, t) = aCA0 + A0(aA − aC)exp(−ϕE0t)+ ϕE0A0(aB − aC)

k − ϕE0
V1(ϕE0t, kt ),

(11.5)
and for thex andt variables

Ẽ(x, t)=E0 exp
[−q1(E0, t)x

]
, (11.6)

Ã(x, t)=A0 exp
[−ϕẼ(x, t)t

]
, (11.7)

B̃(x, t)= ϕẼ(x, t)A0

k − ϕẼ(x, t )
V1
(
ϕtẼ(x, t), kt

)
, (11.8)

C̃(x, t)=A0− Ã(x, t) − B̃(x, t). (11.9)

In the case of reaction 4 one can write down for theE andt variables

A(E, t)=A0 exp(−ϕ1Et), (12.1)

B(E, t)= ϕ1A0

ϕ2− ϕ1
V1(ϕ1Et, ϕ2Et), (12.2)

C(E, t)=A0 − A(E, t)− B(E, t), (12.3)

x̃(E, t)= 1

q1(E0, t)
ln

E0

E
, (12.4)
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where

q1(E0, t) = aCA0+ A0(aA − aC)exp(−ϕE0t)+ ϕ1A0(aB − aC)

ϕ2− ϕ1
V1(ϕ1E0t, ϕ2E0t),

(12.5)
and for thex andt variables

Ẽ(x, t)=E0 exp
[−q1(E0, t)x

]
, (12.6)

Ã(x, t)=A0 exp
[−ϕ1Ẽ(x, t)t

]
, (12.7)

B̃(x, t)= ϕ1A0

ϕ1− ϕ2
V1
(
ϕ1Ẽ(x, t )t, ϕ2Ẽ(x, t)t

)
, (12.8)

C̃(x, t)=A0− Ã(x, t)− B̃(x, t). (12.9)

3. Solving the PDE systems with iterative methods

Let us find solutions of the first and the second type systems by the method of
successive iterations. For the first type system thenth step solutions,A[n], B[n] andE[n],
are related to the(n − 1)th step solutions,A[n−1], B[n−1] andE[n−1], with the following
expressions:

dA[n]

dt
+ (α2+ α3E

[n−1])A[n] = α1, (13.1)

B[n] = A0+ B0− A[n], (13.2)
dE[n]

dx
= −E[n](ε1+ ε2A

[n−1]). (13.3)


Here, the boundary and initial conditions,A[n](x,0) = A0, B[n](x,0) = B0,

E[n](0, t) = E0, are to be fulfilled. In the case of the second type system one can
write down thenth step solutions,A[n], B[n], C[n] andE[n], as

dA[n]

dt
+ α3A

[n]E[n−1] = 0, (14.1)

dB[n]

dt
+ (β2+ β3E

[n−1])B[n] = β1E
[n−1]A[n−1], (14.2)

C[n] = A0− A[n] − B[n], (14.3)
dE[n]

dx
= −E[n](ε1+ ε2A

[n−1] + ε3B
[n−1]), (14.4)


where

A[n](x,0) = A0, B[n](x,0) = B0, C[n](x,0) = 0, E[n](0, t) = E0,

0 � n �∞.
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Solving systems (13) and (14) as the first-order ODEs having variable coefficients
and variable right-hand parts, one obtains general solutions for the first type system

A[n](x, t)=A0 exp

{
−
[
α2t + α3

∫ t

0
E[n−1](x, τ )dτ

]}
+ α1

∫ t

0
exp

{
−
[
α2(t − τ)+ α3

∫ t

τ

E[n−1](x, ξ )dξ

]}
dτ, (15.1)

B[n](x, t)=A0+ B0− A[n](x, t), (15.2)

E[n](x, t)=E0 exp

{
−
[
ε1x + ε2

∫ x

0
A[n−1](η, t)dη

]}
, (15.3)

and for the second type one:

A[n](x, t)=A0 exp

{
−
[
α2t + α3

∫ t

0
E[n−1](x, τ )dτ

]}
, (16.1)

B[n](x, t)= β1

∫ t

0
A[n−1](x, τ )E[n−1](x, τ )

× exp

{
−
[
β2(t − τ)+ β3

∫ t

τ

E[n−1](x, ξ )dξ

]}
dτ, (16.2)

C[n](x, t)=A0− A[n](x, t) − B[n](x, t), (16.3)

E[n](x, t)=E0 exp

{
−
[
ε1x + ε2

∫ x

0
A[n−1](η, t)dη + ε3

∫ x

0
B[n−1](η, t) dη

]}
.

(16.4)

Let us consider the first type system. The zeroth approximation can be written as

A[0](x, t) = A0, B[0](x, t) = B0, E[0](x, t) = E0. (15.4)

Substitution ofA[0](x, t) andE[0](x, t) into equations (15.1) and (15.3) gives the
first-order approximation

A[1](x, t)= a1 + b1 exp(−p1t), (17.1)

B[1](x, t)=A0 + B0− A[1](x, t), (17.2)

E[1](x, t)=E0 exp(−qx), (17.3)

where

p1 = α2+ α3E0, a1 = α1

p1
, b1 = A0− a1, q = ε1+ A0ε2. (17.4)

Substitution ofA[1](x, t) andE[1](x, t) into the right-hand part of the general so-
lutions given by equations (15.1) and (15.3) permits one to obtain the second-order ap-
proximations
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A[2](x, t)= a1(x)+ b1(x)exp
(−tp1(x)

)
, (18.1)

B[2](x, t)=A0 + B0− A[2](x, t), (18.2)

E[2](x, t)=E0 exp
[−xq1(t)

]
, (18.3)

where

p1(x) = α2+ a3E0 exp(−qx), a1(x) = α1

p1(x)
,

q1(t) = ε1+ ε2
[
a1 + b1 exp(−tp1)

]
, b1(x) = A0− a1(x).

(18.4)

For the second type systems one can start from

A[0](x, t) = A0, B[0](x, t) = 0, C[0](x, t) = 0, E[0](x, t) = E0. (18.1)

Substitution ofA[0](x, t) andE[0](x, t) into the right-hand part of equations (15.1)
and (15.3) gives the first-order approximation

A[1](x, t)=A0 exp(−p1t), (19.1)

B[1](x, t)= a2
[
1− exp(−p2t)

]
, (19.2)

C[1](x, t)=A0− A[1](x, t) − B[1](x, t), (19.3)

E[1](x, t)=E0 exp(−qx), (19.4)

where

p1= α3E0, (19.5)

p2= β2 + β3E0, (19.6)

α2= β1A0E0

p2
, (19.7)

q = ε1+ ε2A0. (19.8)

The second-order approximation can be written as

A[2](x, t)=A0 exp
[−p1(x)t

]
, (20.1)

B[2](x, t)= b2
{
exp(−p1t)− exp

[−p2(x)t
]}

, (20.2)

C[2](x, t)=A0− A[2](x, t) − B[2](x, t), (20.3)

E[2](x, t)=E0 exp
[−q1(t)x

]
, (20.4)

where

p1(x)= α3E0 exp(−qx), (20.5)

p2(x)= β2 + β3E0 exp(−qx), (20.6)

b2(x)= β1A0E0 exp(−qx)
p2(x)− p1

, (20.7)

q1(t)= ε1+ ε2a2 + ε2A0 exp(−p1t)− ε2a2 exp(−p2t). (20.8)
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Comparing the two methods described, it should be noted that both methods give
the similar results when one keeps in expressions (8.5) and (8.6) the main term only in
the method of the new coordinate system introduction or the second-order results of the
method in successive iterations.

4. Conclusion

We proposed four mathematical models describing photochemical kinetics in the
systems with absence of reagent mobility. The method was developed giving an op-
portunity to obtain the exact solutions of the mathematical models and two methods
of obtaining the approximate solutions. Although transforming from the(x, t) indepen-
dent variables to the(E, t) ones gives us the possibility to obtain the exact solutions, this
method is connected with difficulties arising during integrals evaluating. The method of
successive iterations has more wide area of applications, but it is more time consuming
and gives very complicated formulas. However, both methods give the similar results
and may be used in applications. The expressions for dependence of intensity of UV
light passed through a film with photochemical reactions having place against the irradi-
ation time give a basis for easy and exact determination of the kinetic parameters for the
reactions involved.
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Appendix. Estimates of errors arising from abolishing all terms but main ones in
q1(E, t) and q2(E, t)

The absolute errors of the approximations for the reactions 1 and 2 may be esti-
mated as

#x1,2 =
∣∣∣∣∫ E0

E

[
1

q1(u, t)
− 1

q1(E0, t)

]
du

u

∣∣∣∣. (A.1)

Taking into account the definition ofq1(E, t) one may transform the expres-
sion (A.1) to

#x1,2 =
∣∣∣∣ ε2

q1(E0, t)

∫ E0

E

A(E0, t)− A(u, t)

q1(u, t)

du

u

∣∣∣∣. (A.2)
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For the first reaction

#x1 =
∣∣∣∣ ε2

q1(E0, t)
A0

∫ E0

E

exp(−ϕE0t)− exp(−ϕut)
q1(u, t)

du

u

∣∣∣∣.
It is obvious that the maximum of the expression in the integral is achieved at

u = E whenE � u � E0. This gives us an opportunity to write

#x1 �
∣∣∣∣ aA − aB

q1(E0, t)
A0V1(ϕE0t), (ϕEt)

∣∣∣∣ ∫ E0

E

du

uq1(u, t)
. (A.3)

Using equation (A.3) the relative error forx is to be determined as

δx1 � A0

∣∣∣∣ aA − aB

q1(E0, t)
V1(ϕE0t, ϕEt)

∣∣∣∣. (A.4)

For the second reaction under study one may write

#x2=
∣∣∣∣ ε2

q1(E0, t)

∫ E0

E

{
k(A0+ B0)ϕ(u− E0)

(k + ϕE0)(k + ϕu)
+ A0

{
exp

[−t (k + ϕu)
]

+ k(A0+ B0)V2(k + ϕE0, k + ϕu, t)
}}du

u

∣∣∣∣. (A.5)

Let us introduce a new functionρ1(u) as

ρ1(u)= ϕk(A0+ B0)(u− E0)

(k + ϕE0)(k + ϕu)
+ A0V1

(
t (k + ϕE0), t (k + ϕu)

)
+ k(A0+ B0)V2(k + ϕE0, k + ϕu, t),

where

V2(x, y, t ) =
{

exp(−tx)
x

− exp(−ty)
y

}
.

Taking into account thatρ ′1(u) > 0 for E � u � E0, |ρ1(u)| takes its maximum at
u = E. From this we can obtain an estimate forδx2

δx2 �
∣∣∣∣ (aA − aB)(k + ϕE0)

(A0+ B0)(kaA + ϕE0aB)+ (ϕE0A0− kB0)exp[−t (ϕ + kE0)]ρ1(E)

∣∣∣∣.
(A.6)

Absolute error of the approximation in the case of the third and fourth type reac-
tions can be found due to

#x3,4 =
∣∣∣∣∫ E0

E

[
1

q2(u, t)
− 1

q2(E0, t)

]
du

u

∣∣∣∣. (A.7)
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Taking into account definition ofq2(E, t), one can transform expression (A.7) to

#x3,4=
∣∣∣∣ ε2

q2(E0, t)

∫ E0

E

A(E0, t)− A(u, t)

q2(u, t)

du

u

+ ε3

q2(E0, t)

∫ E0

E

B(E0, t)− B(u, t)

q2(u, t)

du

u

∣∣∣∣. (A.8)

For the third reaction

#x3=
∣∣∣∣ ε2A0

q2(E0, t)

∫ E0

E

V1(tϕE0, tϕu)du

uq2(u, t)

+ ε3A0ϕ

q2(E0, t)

∫ E0

E

{
E0

k − ϕE0
V1(ϕE0t, kt)− u

k − ϕu
V1(ϕut, kt)

}
du

uq2(u, t)

∣∣∣∣.
(A.9)

Hence, one can write

#x3 �
∣∣∣∣ A0ε2

q2(E0, t)
V1(ϕE0t, ϕEt)

∣∣∣∣ ∫ E0

E

du

uq2(u, t)

+
∣∣∣∣ ϕA0ε3

q2(E0, t)

∫ E0

E

[
E0

k − ϕE0
V1(ϕEt, kt)− u

k − ϕu
V1(ϕut, kt)

]
du

uq2(u, t)

∣∣∣∣.
(A.10)

Let us introduce another functionρ2(u):

ρ2(u) = E0

k − ϕE0
V1(ϕE0t, kt )− u

k − ϕu
V1(ϕut, kt).

Whenk − ϕu < 0 thenρ ′2(u) < 0, and

δx3 �A0

∣∣∣∣ ε2

q2(E0, t)
V1(ϕE0t, ϕEt)

∣∣∣∣
+ ϕA0

∣∣∣∣ ε2

q2(E0, t)

{
E0

k − ϕE0
V1(ϕE0t, kt)− E

k − ϕE
V1(ϕEt, kt)

}∣∣∣∣. (A.11)

For the fourth type reaction

#x4=
∣∣∣∣ ε2A0

q2(E0, t)

∫ E0

E

V1(ϕ1E0t, ϕ1Et)
du

uq2(u, t)

+ ε3A0ϕ1

q2(E0, t)

1

ϕ2− ϕ1

∫ E0

E

[
V1(ϕ1E0t, ϕ2E0t)− V1(ϕ1ut, ϕ2ut)

] du

uq2(u, t)

∣∣∣∣.
(A.12)
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Hence, one may obtain

#x4 �
∣∣∣∣ ε2A0

q2(E0, t)
V1(ϕ1E0t, ϕ1Et)

∣∣∣∣ ∫ E0

E

du

uq2(u, t)

+
∣∣∣∣ ε3A0ϕ1

q2(E0, t)

1

ϕ2− ϕ1
ρ(u, t)

∣∣∣∣ ∫ E0

E

du

uq2(u, t)
,

where

ρ(u, t) = V1(ϕ1E0t, ϕ2E0t)− V1(ϕ1ut, ϕ2ut).

Functionρ(u, t) takes its maximum forE � u � E0 when

u = 1

t (ϕ1− ϕ2)
ln

ϕ1

ϕ2
,

and

maxρ(u) = V1(ϕ1E0t, ϕ2E0t)+
(
ϕ2

ϕ1

)ϕ1/(ϕ1−ϕ2)
(

1− ϕ1

ϕ2

)
.

But then

δx4 �A0

∣∣∣∣ ε2

q2(E0, t)
V1(ϕ1E0t, ϕ1Et)

∣∣∣∣
+ A0ϕ1

∣∣∣∣ ε3

q2(E0, t)(ϕ2 − ϕ1)

[
V1(ϕ1E0t, ϕ2E0t)+

(
ϕ2

ϕ1

)ϕ1/(ϕ1−ϕ2)
(

1− ϕ1

ϕ2

)]∣∣∣∣.
(A.13)
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